淘宝客户端内操作届时但欧盟拒绝放弃自己的
当前位置 :主页 > 香港100%最准一肖中特 >
淘宝客户端内操作届时但欧盟拒绝放弃自己的
* 来源 :http://www.rrsnht.com * 作者 : * 发表时间 : 2018-07-10 00:48
淘宝客户端内操作,届时,但欧盟拒绝放弃自己的规则来迎合英国 。也不清楚欧盟是否会同意该计划。
点击“蓝字”发现惊喜 近年来防范手段: 同学们千万不要轻信网络游戏中弹出的优惠、 中奖、 买卖信息,随后约翰?福布斯?纳什(John Forbes Nash Jr. 1950 1951)利用不动点定理证明了均衡点的存在为博弈论的一般化奠定了坚实的基础此外塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用今天博弈论已发展成一门较完善的的学科 通常认为现代经济博弈论是在20世纪50年代由匈牙利/美国著名数学家冯?诺依曼(von Neumann)的经济学家奥斯卡?摩根斯坦(Oscar Morgenstern)引入经济学的目前已成为经济分析的主要工具之一对产业组织理论、委托代理理论、信息经济学等经济理论的发展做出了非常重要的贡献1994年的诺贝尔经济学奖颁发给了约翰?纳什(John Nash)等三位在博弈论研究中成绩卓著的经济学家1996年的诺贝尔经济学奖又授予在博弈论的应用方面有着重大成就的经济学家由于博弈论重视经济主体之间的相互联系及其辨证关系大大拓宽了传统经济学的分析思路使其更加接近现实市场竞争从而成为现代微观经济学的重要基石也为现代宏观经济学提供了更加坚实的微观基础 当代博弈论的“三大家”和“四君子” "三大家" 包括约翰?福布斯?纳什、约翰?C?海萨尼以及莱因哈德?泽尔腾这三人同时因为他们对博弈论的突出贡献而获得1994年的瑞典银行经济学奖(也称诺贝尔经济学奖) "四君子" 包括罗伯特?J?奥曼、肯?宾摩尔、戴维?克瑞普斯以及阿里尔?鲁宾斯坦 博弈要素: (1)局中人(players):在一场竞赛或博弈中每一个有决策权的参与者成为一个局中人只有两个局中人的博弈现象称为“两人博弈”而多于两个局中人的博弈称为 “多人博弈” (2)策略(strategies):一局博弈中每个局中人都有选择实际可行的完整的行动方案即方案不是某阶段的行动方案而是指导整个行动的一个方案一个局中人的一个可行的自始至终全局筹划的一个行动方案称为这个局中人的一个策略如果在一个博弈中局中人都总共有有限个策略则称为“有限博弈”否则称为“无限博弈” (3)得失(payoffs):一局博弈结局时的结果称为得失每个局中人在一局博弈结束时的得失不仅与该局中人自身所选择的策略有关而且与全局中人所取定的一组策略有关所以一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数通常称为支付(payoff)函数 (4)次序(orders):各博弈方的决策有先后之分且一个博弈方要作不止一次的决策选择就出现了次序问题;其他要素相同次序不同博弈就不同 (5)博弈涉及到均衡:均衡是平衡的意思在经济学中均衡意即相关量处于稳定值在供求关系中某一商品市场如果在某一价格下想以此价格买此商品的人均能买到而想卖的人均能卖出此时我们就说该商品的供求达到了均衡所谓纳什均衡它是一稳定的博弈结果 纳什均衡(Nash Equilibrium):在一策略组合中所有的参与者面临这样一种情况当其他人不改变策略时他此时的策略是最好的也就是说此时如果他改变策略他的支付将会降低在纳什均衡点上每一个理性的参与者都不会有单独改变策略的冲动纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出所谓“均衡偶”是在二人零和博弈中当局中人A采取其最优策略a*局中人B也采取其最优策略b*如果局中人B仍采取b*而局中人A却采取另一种策略a那么局中人A的支付不会超过他采取原来的策略a*的支付这一结果对局中人B亦是如此 这样“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶对任一策略a(属于策略集A)和策略b(属于策略集B)总有:偶对(a b*)≤偶对(a*b*)≥偶对(a*b) 对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶对任一策略a(属于策略集A)和策略 b(属于策略集B)总有:对局中人A的偶对(a b*) ≤偶对(a*b*);对局中人B的偶对(a*b)≤偶对(a*b*) 有了上述定义就立即得到纳什定理: 任何具有有限纯策略的二人博弈至少有一个均衡偶这一均衡偶就称为纳什均衡点 纳什定理的严格证明要用到不动点理论不动点理论是经济均衡研究的主要工具通俗地说寻找均衡点的存在性等价于找到博弈的不动点 纳什均衡点概念提供了一种非常重要的分析手段使博弈论研究可以在一个博弈结构里寻找比较有意义的结果 但纳什均衡点定义只局限于任何局中人不想单方面变换策略而忽视了其他局中人改变策略的可能性因此在很多情况下纳什均衡点的结论缺乏说服力研究者们形象地称之为“天真可爱的纳什均衡点” 塞尔顿(R?Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡 博弈的分类根据不同的基准也有不同的分类一般认为博弈主要可以分为合作博弈和非合作博弈 合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议如果有就是合作博弈如果没有就是非合作博弈 从行为的时间序列性博弈论进一步分为静态博弈、动态博弈两类: 静态博弈是指在博弈中参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动; 动态博弈是指在博弈中参与人的行动有先后顺序且后行动者能够观察到先行动者所选择的行动通俗的理解:"囚徒困境"就是同时决策的属于静态博弈;而棋牌类游戏等决策或行动有先后次序的属于动态博弈 按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈 完全博弈是指在博弈过程中每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息 不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息在这种情况下进行的博弈就是不完全信息博弈 目前经济学家们现在所谈的博弈论一般是指非合作博弈由于合作博弈论比非合作博弈论复杂在理论上的成熟度远远不如非合作博弈论非合作博弈又分为:完全信息静态博弈完全信息动态博弈不完全信息静态博弈不完全信息动态博弈与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium)子博弈精炼纳什均衡(subgame perfect Nash equilibrium)贝叶斯纳什均衡(Bayesian Nash equilibrium)精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium) 博弈论还有很多分类比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型等等 博弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样都是从复杂的现象中抽象出基本的元素对这些元素构成的数学模型进行分析而后逐步引入对其形势产生影响的其他因素从而分析其结果 基于不同抽象水平形成三种博弈表述方式标准型、扩展型和特征函数型利用这三种表述形式可以研究形形色色的问题因此它被称为“社会科学的数学”从理论上讲博弈论是研究理性的行动者相互作用的形式理论而实际上正深入到经济学、政治学、社会学等等被各门社会科学所应用 博弈论是指某个个人或是组织面对一定的环境条件在一定的规则约束下依靠所掌握的信息从各自选择的行为或是策略进行选择并加以实施并从各自取得相应结果或收益的过程在经济学上博弈论是个非常重要的理论概念 什么是博弈论古语有云世事如棋生活中每个人如同棋手其每一个行为如同在一张看不见的棋盘上布一个子精明慎重的棋手们相互揣摩、相互牵制人人争赢下出诸多精彩纷呈、变化多端的棋局博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分并将其系统化为一门科学换句话说就是研究个体如何在错综复杂的相互影响中得出最合理的策略事实上博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等数学家们将具体的问题抽象化通过建立自完备的逻辑框架、体系研究其规律及变化这可不是件容易的事情以最简单的二人对弈为例稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手甲出子的时候为了赢棋得仔细考虑乙的想法而乙出子时也得考虑甲的想法所以甲还得想到乙在想他的想法乙当然也知道甲想到了他在想甲的想法… 面对如许重重迷雾博弈论怎样着手分析解决问题怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢现代博弈理论由匈牙利大数学家冯?诺伊曼于20世纪20年代开始创立1944年他与经济学家奥斯卡?摩根斯特恩合作出版的巨著《博弈论与经济行为》标志着现代系统博弈理论的初步形成对于非合作、纯竞争型博弈诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球一个人赢一着则另一个人必输一着净获利为零在这里抽象化后的博弈问题是已知参与者集合(两方) 策略集合(所有棋着) 和盈利集合(赢子输子) 能否且如何找到一个理论上的“解” 或“平衡” 也就是对参与双方来说都最“合理” 、最优的具体策略怎样才是“合理” 应用传统决定论中的“最小最大” 准则即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利并据此最优化自己的对策诺伊曼从数学上证明通过一定的线性运算对于每一个二人零和博弈都能够找到一个“最小最大解” 通过一定的线性运算竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤就可以最终达到彼此盈利最大且相当当然其隐含的意义在于这套最优策略并不依赖于对手在博弈中的操作用通俗的话说这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望做最坏的打算” 一、经济学中的“智猪博弈”(Pigs’payoffs) 这个例子讲的是:猪圈里有两头猪一头大猪一头小猪猪圈的一边有个踏板每踩一下踏板在远离踏板的猪圈的另一边的投食口就会落下少量的食物如果有一只猪去踩踏板另一只猪就有机会抢先吃到另一边落下的食物当小猪踩动踏板时大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板则还有机会在小猪吃完落下的食物之前跑到食槽争吃到另一半残羹 那么两只猪各会采取什么策略答案是:小猪将选择“搭便车”策略也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间 原因何在因为小猪踩踏板将一无所获不踩踏板反而能吃上食物对小猪而言无论大猪是否踩动踏板不踩踏板总是好的选择反观大猪已明知小猪是不会去踩动踏板的自己亲自去踩踏板总比不踩强吧所以只好亲力亲为了 “小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的规则的核心指标是:每次落下的食物数量和踏板与投食口之间的距离 如果改变一下核心指标猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗试试看 改变方案一:减量方案投食仅原来的一半分量结果是小猪大猪都不去踩踏板了小猪去踩大猪将会把食物吃完;大猪去踩小猪将也会把食物吃完谁去踩踏板就意味着为对方贡献食物所以谁也不会有踩踏板的动力了 如果目的是想让猪们去多踩踏板这个游戏规则的设计显然是失败的 改变方案二:增量方案投食为原来的一倍分量结果是小猪、大猪都会去踩踏板谁想吃谁就会去踩踏板反正对方不会一次把食物吃完小猪和大猪相当于生活在物质相对丰富的“共产主义”社会所以竞争意识却不会很强 对于游戏规则的设计者来说这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈想让猪们去多踩踏板的效果并不好 改变方案三:减量加移位方案投食仅原来的一半分量但同时将投食口移到踏板附近结果呢小猪和大猪都在拼命地抢着踩踏板等待者不得食而多劳者多得每次的收获刚好消费完 对于游戏设计者这是一个最好的方案成本不高但收获最大 原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发但是对于社会而言因为小猪未能参与竞争小猪搭便车时的社会资源配置的并不是最佳状态为使资源最有效配置规则的设计者是不愿看见有人搭便车的政府如此公司的老板也是如此而能否完全杜绝“搭便车”现象就要看游戏规则的核心指标设置是否合适了 比如公司的激励制度设计奖励力度太大又是持股又是期权公司职员个个都成了百万富翁成本高不说员工的积极性并不一定很高这相当于“智猪博弈”增量方案所描述的情形但是如果奖励力度不大而且见者有份(不劳动的“小猪”也有)一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形最好的激励机制设计就象改变方案三----减量加移位的办法奖励并非人人有份而是直接针对个人(如业务按比例提成)既节约了成本(对公司而言)又消除了“搭便车”现象能实现有效的激励 许多人并未读过“智猪博弈”的故事但是却在自觉地使用小猪的策略股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人等等因此对于制订各种经济管理的游戏规则的人必须深谙“智猪博弈”指标改变的个中道理 二、囚徒困境博弈 在博弈论中含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoners’ dilemma)博弈模型该模型用一种特别的方式为我们讲述了一个警察与小偷的故事假设有两个小偷A和B联合犯事、私入民宅被警察抓住警方将两人分别置于不同的两个房间内进行审讯对每一个犯罪嫌疑人警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行交出了赃物于是证据确凿两人都被判有罪如果另一个犯罪嫌疑人也作了坦白则两人各被判刑8年;如果另一个犯罪嫌疑人没有坦白而是抵赖则以妨碍公务罪(因已有证据表明其有罪)再加刑2年而坦白者有功被减刑8年立即释放如果两人都抵赖则警方因证据不足不能判两人的偷窃罪但可以私入民宅的罪名将两人各判入狱1年下表给出了这个博弈的支付矩阵 表 囚徒困境博弈 [Prisoner's dilemma] 我们来看看这个博弈可预测的均衡是什么对A来说尽管他不知道B作何选择但他知道无论B选择什么他选择“坦白”总是最优的显然根据对称性B也会选择“坦白”结果是两人都被判刑8年但是倘若他们都选择“抵赖”每人只被判刑1年在表22中的四种行动选择组合中(抵赖、抵赖)是帕累托最优的因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差不难看出“坦白”是任一犯罪嫌疑人的占优战略而(坦白坦白)是一个占优战略均衡 要了解纳什的贡献首先要知道什么是非合作博弈问题现在几乎所有的博弈论教科书上都会讲“囚犯的两难处境”的例子每本书上的例子都大同小异 博弈论毕竟是数学更确切地说是运筹学的一个分支谈经论道自然少不了数学语言外行人看来只是一大堆数学公式好在博弈论关心的是日常经济生活问题所以不能不食人间烟火其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策性质的问题中借用的术语听上去有点玄奥实际上却具有重要现实意义博弈论大师看经济社会问题犹如棋局常常寓深刻道理于游戏之中所以多从我们的日常生活中的凡人小事入手以我们身边的故事做例子娓娓道来并不乏味 话说有一天一位富翁在家中被杀财物被盗警方在此案的侦破过程中抓到两个犯罪嫌疑人斯卡尔菲丝和那库尔斯并从他们的住处搜出被害人家中丢失的财物但是他们矢口否认曾杀过人辩称是先发现富翁被杀然后只是顺手牵羊偷了点儿东西于是警方将两人隔离分别关在不同的房间进行审讯由地方检察官分别和每个人单独谈话 检察官说“由于你们的偷盗罪已有确凿的证据所以可以判你们一年刑期但是我可以和你做个交易如果你单独坦白杀人的罪行我只判你三个月的监禁但你的同伙要被判十年刑如果你拒不坦白而被同伙检举那么你就将被判十年刑他只判三个月的监禁但是如果你们两人都坦白交代那么你们都要被判5年刑”斯卡尔菲丝和那库尔斯该怎么办呢他们面临着两难的选择??坦白或抵赖显然最好的策略是双方都抵赖结果是大家都只被判一年但是由于两人处于隔离的情况下无法串供所以按照亚当?斯密的理论每一个人都是从利己的目的出发他们选择坦白交代是最佳策略因为坦白交代可以期望得到很短的监禁???3个月但前提是同伙抵赖显然要比自己抵赖要坐10年牢好这种策略是损人利己的策略不仅如此坦白还有更多的好处如果对方坦白了而自己抵赖了那自己就得坐10年牢太不划算了因此在这种情况下还是应该选择坦白交代即使两人同时坦白至多也只判5年总比被判 10年好吧所以两人合理的选择是坦白原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现 这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”也叫非合作均衡因为每一方在选择策略时都没有“共谋”(串供)他们只是选择对自己最有利的策略而不考虑社会福利或任何其他对手的利益也就是说这种策略组合由所有局中人(也称当事人、参与者)的最佳策略组合构成没有人会主动改变自己的策略以便使自己获得更大利益“囚徒的两难选择”有着广泛而深刻的意义个人理性与集体理性的冲突各人追求利己行为而导致的最终结局是一个“纳什均衡”也是对所有人都不利的结局他们两人都是在坦白与抵赖策略上首先想到自己这样他们必然要服长的刑期只有当他们都首先替对方着想时或者相互合谋(串供)时才可以得到最短时间的监禁的结果“纳什均衡”首先对亚当?斯密的“看不见的手”的原理提出挑战按照斯密的理论在市场经济中每一个人都从利己的目的出发而最终全社会达到利他的效果 不妨让我们重温一下这位经济学圣人在《国富论》中的名言:“通过追求(个人的)自身利益他常常会比其实际上想做的那样更有效地促进社会利益”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发结果损人不利己既不利己也不利他两个囚徒的命运就是如此从这个意义上说“纳什均衡”提出的悖论实际上动摇了西方经济学的基石因此从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人但只有他们也按同样方式行事才行也就是中国人说的“己所不欲勿施于人”但前提是人所不欲勿施于我其次“纳什均衡”是一种非合作博弈均衡在现实中非合作的情况要比合作情况普遍所以“纳什均衡”是对冯?诺依曼和摩根斯特恩的合作博弈理论的重大发展甚至可以说是一场革命 从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象我们将例举出许多类似于“囚徒的两难处境” 这样的例子如价格战博弈、军奋竞赛博弈、污染博弈等等一般的博弈问题由三个要素所构成:即局中人(players)又称当事人、参与者、策略等等的集合策略 (strategies)集合以及每一对局中人所做的选择和赢得(payoffs)集合其中所谓赢得是指如果一个特定的策略关系被选择每一局中人所得到的效用所有的博弈问题都会遇到这三个要素 三、价格战博弈 现在我们经常会遇到各种各样的家电价格大战彩电大战、冰箱大战、空调大战、微波炉大战……这些大战的受益者首先是消费者每当看到一种家电产品的价格大战百姓都会“没事儿偷着乐”在这里我们可以解释厂家价格大战的结局也是一个“纳什均衡”而且价格战的结果是谁都没钱赚因为博弈双方的利润正好是零竞争的结果是稳定的即是一个“纳什均衡”这个结果可能对消费者是有利的但对厂商而言是灾难性的所以价格战对厂商而言意味着自杀从这个案例中我们可以引伸出两个问题一是竞争削价的结果或“纳什均衡”可能导致一个有效率的零利润结局二是如果不采取价格战作为一种敌对博弈论 (vivalry game)其结果会如何呢每一个企业都会考虑采取正常价格策略还是采取高价格策略形成垄断价格并尽力获取垄断利润如果垄断可以形成则博弈双方的共同利润最大这种情况就是垄断经营所做的通常会抬高价格另一个极端的情况是厂商用正常的价格双方都可以获得利润从这一点我们又引出一条基本准则:“把你自己的战略建立在假定对手会按其最佳利益行动的基础上”事实上完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”在这种状态下每一个厂商或消费者都是按照所有的别人已定的价格来进行决策在这种均衡中每一企业要使利润最大化消费者要使效用最大化结果导致了零利润也就是说价格等于边际成本在完全竞争的情况下非合作行为导致了社会所期望的经济效率状态如果厂商采取合作行动并决定转向垄断价格那么社会的经济效率就会遭到破坏这就是为什么WTO和各国政府要加强反垄断的意义所在 四、污染博弈 假如市场经济中存在着污染但政府并没有管制的环境企业为了追求利润的最大化宁愿以牺牲环境为代价也绝不会主动增加环保设备投资按照看不见的手的原理所有企业都会从利己的目的出发采取不顾环境的策略从而进入“纳什均衡”状态如果一个企业从利他的目的出发投资治理污染而其他企业仍然不顾环境污染那么这个企业的生产成本就会增加价格就要提高它的产品就没有竞争力甚至企业还要破产这是一个“看不见的手的有效的完全竞争机制”失败的例证直到20世纪90年代中期中国乡镇企业的盲目发展造成严重污染的情况就是如此只有在政府加强污染管制时企业才会采取低污染的策略组合企业在这种情况下获得与高污染同样的利润但环境将更好 五、贸易战博弈论 这个问题对于刚刚加入WTO的中国而言尤为重要任何一个国家在国际贸易中都面临着保持贸易自由与实行贸易保护主义的两难选择贸易自由与壁垒问题也是一个“纳什均衡”这个均衡是贸易双方采取不合作博弈的策略结果使双方因贸易战受到损害X国试图对Y国进行进口贸易限制比如提高关税则Y国必然会进行反击也提高关税结果谁也没有捞到好处反之如X和Y能达成合作性均衡即从互惠互利的原则出发双方都减少关税限制结果大家都从贸易自由中获得了最大利益而且全球贸易的总收益也增加了 博弈论--这是一个热得烫手的概念它不仅仅存在于数学的运筹学中也正在经济学中占据越来越重要的地位(近几年诺贝尔经济学奖就频频授予博弈论研究者)但如果你认为博弈论的应用领域仅限于此的话那你就大错了实际上博弈论甚至在我们的工作和生活中无处不在在工作中你在和上司博弈也在和下属博弈你也同样会跟其他相关部门人员博弈;而要开展业务你更是在和你的客户以及竞争对手博弈在生活中博弈仍然无处不在博弈论代表着一种全新的分析方法和全新的思想 诺贝尔经济学奖获得者包罗?萨缪尔逊如是说:要想在现代社会做个有价值的人你就必须对博弈论有个大致的了解也可以这样说要想赢得生意不可不学博弈论;要想赢得生活同样不可不学博弈论 博弈论(game theory)对人的基本假定是:人是理性的(rational或者说自私的)理性的人是指他在具体策略选择时的目的是使自己的利益最大化博弈论研究的是理性的人之间如何进行策略选择的 纳什(John Nash)编制的博弈论经典故事"囚徒的困境"说明了非合作博弈及其均衡解的成立故称"纳什平衡" 所有的博弈问题都会遇到三个要素在囚徒的故事中两个囚徒是当事人(players)又称参与者;当事人所做的选择策略 (strategies)是承认了杀人事实最后两个人均赢得(payoffs)了中间的宣判结果如果两个囚徒之中有一个承认杀人另外一个抵赖不承认杀人那么承认者将会得到减刑处理而抵赖者将会得到最严厉的死刑判决在纳什故事中两个人都承认了犯罪事实所以两个囚徒得到的是中间的结果 类似的: 我们也能从“自私的基因”等理论中看到“纳什平衡”的体现 艾克斯罗德(Robert Axelrod)在开始研究合作之前设定了两个前提:一、每个人都是自私的;二、没有权威干预个人决策也就是说个人可以完全按照自己利益最大化的企图进行决策在此前提下合作要研究的问题是:第一、人为什么要合作;第二、人什么时候是合作的什么时候又是不合作的;第三、如何使别人与你合作 社会实践中有很多合作的问题比如国家之间的关税报复对他国产品提高关税有利于保护本国的经济但是国家之间互提关税产品价格就提高了丧失了竞争力损害了国际贸易的互补优势在对策中由于双方各自追求自己利益的最大化导致了群体利益的损害对策论以著名的囚犯困境来描述这个问题 A和B各表示一个人他们的选择是完全无差异的选择C代表合作选择D代表不合作如果AB都选择C合作则两人各得3分;如果一方选C一方选D则选C的得零分选D的得5分;如果AB都选D双方各得1分 显然对群体来说最好的结果是双方都选C各得3分共得6分如果一方选C一方选D总体得5分如果两人都选D总体得2分 对策学界用这个矩阵来描述个体理性与群体理性的冲突:每个人在追求个体利益最大化时就使群体利益受损这就是囚徒困境在矩阵中对于A来说当对方选 C他选D得5分选C只得3分;当对方选D他选D得1分选C得零分因此无论对方选C或D对A来说选D都得分最多这是A单方面的优超策略而当两个优超策略相遇即AB都选D时结果是各得1分这个结果在矩阵中并非最优困境就在于每个人采取各自的优超策略时得出的解是稳定的但不是帕累托最优的这个结果体现了个体理性与群体理性的矛盾在数学上这个一次性决策的矩阵没有最优解 如果博弈进行多次只要对策者知道博弈次数他们在最后一次肯定采取互相背叛的策略既然如此前面的每一次也就没有合作的必要因此在次数已知的多次博弈中对策者没有一次会合作 如果博弈在多人间进行而且次数未知对策者就会意识到当持续地采取合作并达成默契时对策者就能持续地各得3分但如果持续地不合作的话每个人就永远得1分这样合作的动机就显现出来多次对局下未来的收益应比现在的收益多一个折现率WW越大表示未来的收益越重要在多人对策持续进行下去且W比较大即未来充分重要时最优的策略是与别人采取的策略有关的假设某人的策略是第一次合作以后只要对方不合作一次他就永不合作对这种对策者当然合作下去是上策假如有的人不管对方采取什么策略他总是合作那么总是对他采取不合作的策略得分最多对于总是不合作的人也只能采取不合作的策略 艾克斯罗德做了一个实验邀请多人来参加游戏得分规则与前面的矩阵相同什么时候结束游戏是未知的他要求每个参赛者把追求得分最多的策略写成计算机程序然后用单循环赛的方式将参赛程序两两博弈以找出什么样的策略得分最高 第一轮游戏有14个程序参加再加上艾克斯罗德自己的一个随机程序(即以50%的概率选取合作或不合作)运转了300次结果得分最高的程序是加拿大学者罗伯布写的"一报还一报"(tit for tat)这个程序的特点是第一次对局采用合作的策略以后每一步都跟随对方上一步的策略你上一次合作我这一次就合作你上一次不合作我这一次就不合作艾克斯罗德还发现得分排在前面的程序有三个特点:第一从不首先背叛即"善良的";第二对于对方的背叛行为一定要报复不能总是合作即" 可激怒的";第三不能人家一次背叛你就没完没了的报复以后人家只要改为合作你也要合作即"宽容性" 为了进一步验证上述结论艾氏决定邀请更多的人再做一次游戏并把第一次的结果公开发表第二次征集到了62个程序加上他自己的随机程序又进行了一次竞赛结果第一名的仍是"一报还一报"艾氏总结这次游戏的结论是:第一"一报还一报"仍是最优策略第二前面提到的三个特点仍然有效因为63人中的前15名里只有第8名的哈灵顿程序是"不善良的"后15名中只有1个总是合作的是"善良的"可激怒性和宽容性也得到了证明此外好的策略还必须具有的一个特点是"清晰性"能让对方在三、五步对局内辨识出来太复杂的对策不见得好"一报还一报"就有很好的清晰性让对方很快发现规律从而不得不采取合作的态度 "一报还一报"的策略在静态的群体中得到了很好的分数那么在一个动态的进化的群体中这种合作者能否产生、发展、生存下去呢群体是会向合作的方向进化还是向不合作的方向进化如果大家开始都不合作能否在进化过程中产生合作为了回答这些疑问艾氏用生态学的原理来分析合作的进化过程 假设对策者所组成的策略群体是一代一代进化下去的进化的规则包括:一试错人们在对待周围环境时起初不知道该怎么做于是就试试这个试试那个哪个结果好就照哪个去做第二遗传一个人如果合作性好他的后代的合作基因就多第三学习比赛过程就是对策者相互学习的过程"一报还一报"的策略好有的人就愿意学按这样的思路艾氏设计了一个实验假设63个对策者中谁在第一轮中的得分高他在第二轮的群体中所占比例就越高而且是他的得分的正函数这样群体的结构就会在进化过程中改变由此可以看出群体是向什么方向进化的 实验结果很有趣"一报还一报"原来在群体中占1/63经过1000代的进化结构稳定下来时它占了24%另外有一些程序在进化过程中消失了其中有一个值得研究的程序即原来前15名中唯一的那个"不善良的"哈灵顿程序它的对策方案是首先合作当发现对方一直在合作它就突然来个不合作如果对方立刻报复它它就恢复合作如果对方仍然合作它就继续背叛这个程序一开始发展很快但等到除了"一报还一报"之外的其它程序开始消失时它就开始下降了因此以合作系数来测量群体是越来越合作的 进化实验揭示了一个哲理:一个策略的成功应该以对方的成功为基础"一报还一报"在两个人对策时得分不可能超过对方最多打个平手但它的总分最高它赖以生存的基础是很牢固的因为它让对方得到了高分哈灵顿程序就不是这样它得到高分时对方必然得到低分它的成功是建立在别人失败的基础上的而失败者总是要被淘汰的当失败者被淘汰之后这个好占别人便宜的成功者也要被淘汰 那么在一个极端自私者所组成的不合作者的群体中"一报还一报"能否生存呢艾氏发现在得分矩阵和未来的折现系数一定的情况下可以算出只要群体的 5%或更多成员是"一报还一报"的这些合作者就能生存而且只要他们的得分超过群体的总平均分这个合作的群体就会越来越大最后蔓延到整个群体反之无论不合作者在一个合作者占多数的群体中有多大比例不合作者都是不可能自下而上的这就说明社会向合作进化的棘轮是不可逆转的群体的合作性越来越大艾克斯罗德正是以这样一个鼓舞人心的结论突破了"囚犯困境"的研究困境 在研究中发现合作的必要条件是:第一、关系要持续一次性的或有限次的博弈中对策者是没有合作动机的;第二、对对方的行为要做出回报一个永远合作的对策者是不会有人跟他合作的 那么如何提高合作性呢首先要建立持久的关系即使是爱情也需要建立婚姻契约以维持双方的合作(火车站的小贩为什么要骗人为什么工作中要形成小组制度换防的时候一方总是要小小地进攻一下的在中越前线就是这样)第二、要增强识别对方行动的能力如果不清楚对方是合作还是不合作就没法回报他了第三、要维持声誉说要报复就一定要做到人家才知道你是不好欺负的才不敢不与你合作第四、能够分步完成的对局不要一次完成以维持长久关系比如贸易、谈判都要分步进行以促使对方采取合作态度第五、不要嫉妒人家的成功"一报还一报"正是这样的典范第六、不要首先背叛以免担上罪魁祸首的道德压力第七、不仅对背叛要回报对合作也要作出回报第八、不要耍小聪明占人家便宜 艾克斯罗德在《合作的进化》一书结尾提出几个结论第一、友谊不是合作的必要条件即使是敌人只要满足了关系持续互相回报的条件也有可能合作比如第一次世界大战期间德英两军在战壕战中遇上了三个月的雨季双方在这三个月中达成了默契互相不攻击对方的粮车给养到大反攻时再你死我活地打这个例子说明友谊不是合作的前提第二、预见性也不是合作的前提艾氏举出生物界低等动物、植物之间合作的例子来说明这一点但是当有预见性的人类了解了合作的规律之后合作进化的过程就会加快这时预见性是有用的学习也是有用的 当游戏中考虑到随机干扰即对策者由于误会而开始互相背叛的情形时吴坚忠博士经研究发现以修正的"一报还一报"即以一定的概率不报复对方的背叛和 "悔过的一报还一报"即以一定的概率主动停止背叛群体所有成员处理随机环境的能力越强"悔过的一报还一报"效果越好"宽大的一报还一报"效果越差 艾克斯罗德通过数学化和计算机化的方法研究如何突破囚徒困境达成合作将这项研究带到了一个全新境界他在数学上的证明无疑是十分雄辩和令人信服的而且他在计算机模拟中得出的一些结论是非常惊人的发现比如总分最高的人在每次博弈中都没有拿到最高分(刘邦和项羽的战争) 艾氏所发现的"一报还一报"策略从社会学的角度可以看作是一种"互惠式利他"这种行为的动机是个人私利但它的结果是双方获利并通过互惠式利他有可能覆盖了范围最广的社会生活人们通过送礼及回报形成了一种社会生活的秩序这种秩序即使在多年隔绝语言不通的人群之间也是最易理解的东西比如哥伦布登上美洲大陆时与印地安人最初的交往就开始于互赠礼物有些看似纯粹的利他行为比如无偿捐赠也通过某些间接方式比如社会声誉的获得得到了回报研究这种行为将对我们理解社会生活有很重要的意义 囚徒困境扩展为多人博弈时就体现了一个更广泛的问题──"社会悖论"或"资源悖论"人类共有的资源是有限的当每个人都试图从有限的资源中多拿一点儿时就产生了局部利益与整体利益的冲突人口问题、资源危机、交通阻塞都可以在社会悖论中得以解释在这些问题中关键是通过研究制定游戏规则来控制每个人的行为 艾克斯罗德的一些结论在中国古典文化道德传统中可以很容易地找到对应"投桃报李"、"人不犯我我不犯人"都体现了"tit for tat"的思想但这些东西并不是最优的因为"一报还一报"在充满了随机性的现实社会生活里是有缺陷的对此孔子在几千年前就说出了"以德报德以直报怨"这样精彩的修正策略所谓"直"就是公正以公正来回报对方的背叛是一种修正了的"一报还一报"修正的是报复的程度本来会让你损失5分现在只让你损失3分从而以一种公正审判来结束代代相续的报复形成文明 但是艾氏对博弈者的一些假设和结论使其研究不可避免地与现实脱节首先《合作的进化》一书暗含着一个重要的假定即个体之间的博弈是完全无差异的现实的博弈中对策者之间绝对的平等是不可能达到的一方面对策者在实际的实力上有差异双方互相背叛时可能不是各得1分而是强者得5分弱者得0分这样弱者的报复就毫无意义另一方面即使对局双方确实旗鼓相当但某一方可能怀有赌徒心理认定自己更强大采取背叛的策略能占便宜艾氏的得分矩阵忽视了这种情形而这种赌徒心理恰恰在社会上大量引发了零和博弈因此程序还可以在此基础上进一步改进 其次艾氏认为合作不需预期和信任这是他受到质疑颇多之处对策者根据对方前面的战术来制定自己下面的战术合作要求个体能够识别那些曾经相遇过的个体并且记得与其相互作用的历史以便作出反应这些都暗含着"预期"行为在应付复杂的对策环境时信任可能是对局双方达成合作的必不可少的环节但是预期与信任如何在计算机的程序中体现出来仍是需要研究的 最后重复博弈在现实中是很难完全实现的一次性博弈的大量存在引发了很多不合作的行为而且对策的一方在遭到对方背叛之后往往没有机会也没有还手之力去进行报复比如资本积累阶段的违约行为国家之间的核威慑在这些情况下社会要使交易能够进行并且防止不合作行为必须通过法制手段以法律的惩罚代替个人之间的"一报还一报"规范社会行为这是艾克斯罗德的研究对制度学派的一个重要启发 博弈论是非对称信息博弈论与管理博弈论的理论基础非对称信息博弈论与管理博弈论都是的应用分支非对称信息博弈论是非合作博弈论在经济学上的应用主要研究非对称信息结构下的最优契约安排问题;管理博弈论是博弈论和非对称信息博弈论在管理学中的应用主要研究多目标、多因素、多阶段下的管理激励与约束机制设计问题 博弈论偏重方法论研究局中人地位平等没有明确的设计主体注重定量模型化分析研究的目的是求得博弈问题的纳什均衡解非对称信息博弈论主要基于委托?代理理论框架下设计最优交易契约设计主体为委托人实施对象为代理人委托人与代理人之间信息非对称委托人通过设计一种激励机制使代理人按他所期望的方向行动 管理博弈论以管理问题为导向设计主体是管理者实施对象是被管理者(有限理性人)管理者通过设计和建立有效的激励与约束机制激励、约束、规范被管理者建立有效的激励与约束机制激励、约束、规范被管理者的行为管理博弈论对管理博弈问题的表述形式主要采用机制式表述同时针对具体问题也可灵活应用博弈论的战略式表述、扩展式表述及非对称信息博弈论的特征函数式表述 非对称信息博弈论与博弈论、管理博弈论的比较 一、引言 一个企业能否在市场中取得经济优势依赖于企业科技优势、产品的市场适应性等等而这一切又源于人才优势因此一个企业面临着如何尽可能地保持自己人力资源的优势如何吸引优秀人才加入企业添加新动力如何有效培训使己有员工获得技能的提高如何使员工适应外部环境变化的要求如何有效挽留公司的核心人才等等但是统计调查显示我国的培训现状不尽如人意总体来看我国企业培训管理的制度化、规范化程度有待加强培训计划执行不力培训效果跟踪与评价环节薄弱培训对改善员工绩效的效用没有发挥培训结果与员工晋升没有太大影响等造成这种现状的原因固然是多方面的其中一个主要原因就是人力资本投资收益的滞后性和不确定性担心员工“硬了翅膀就飞走”得不偿失企业是否增加人力资本投资员工是否留任企业都是利益的博弈结果是选择有利于自己的战略本文用博弈论对企业人力资本投资作分析说明企业应当进行人力资本投资和投资后应采取措施保证人力资本投资收益的获取 二、概念和假定 1概念界定 ①人力资本人力资本是通过投资于已有人力资源而形成的、以复杂劳动力为载体的、能实现价值增值的可变资本 ②企业人力资本投资企业人力资本投资是指企业通过一定的投入(货币、资本或实物)获得人力资源增加企业员工的知识、技能、健康水平提高企业管理、文化水平和企业形象从而提升企业人力资本存量使企业经济效益提高的一种投资行为 2基本假设 ①经济人经济人假设是指无论是组织还是个人追求自身利益的最大化 ②完全信息完全信息是指信息是完全通畅的不存在滞塞而且客观存在的信息的获取是不需要成本的 ③物质资本充足商品的生产总是物质资本和人力资本结合在一起进行的 要使生产高效率的进行物质资本和人力资本必须保持适当的比例 三、人力资本投资与员工个人的博弈分析 本文从企业与员工之间的角度作人力资本投资的完全信息静态博弈分析重点分析企业是否增加人力资本投资以及投资后如何行动 假定在完全信息的条件下企业和员工都是理性的企业可以选择对员工培训或不培训根据企业的选择员工会做出留下或是转投其他企业的选择假设企业不对员工进行培训是员工的收入为d当企业选择培训假设分摊到员工个人的培训费用为c经过培训后多支付员工的薪水为e(e可以为零即经过培训后不增加员工薪水)经过培训后员工为企业带来的收益增加值为b又假设员工离职去另一单位获得的报酬为a这里为了分析更简单一些假设员工经过培训与未经过培训跳槽的收入一样都为a有时候培训后由于员工技能提高跳槽会获得更多的收入但是并不影响下面的分析企业培训博弈分析如表1所示:当b-c-e0时该博弈成立并可能会出现两种均衡:如果此时员工选择留下所获得的收益d+e大于其选择跳槽时所获的收益a时理性的员工必定会留在原来的企业企业也必然会选择培训投入这也是这个博弈中双方的最优决策;如果此时员工选择留下所获得的收益d+e小于其选择跳槽时所获的收益a时理性的员工必定选择跳槽此时企业损失为c损失最惨重对企业而言如果知道这样做令员工跳槽的话那么企业还不如刚开始就不培训那样蒙受的损失会少些这里需要指出的是一个员工是否跳槽并不简单的取决于对方企业开出的薪酬影响因素有很多比如员工个性是否与企业匹配、员工个人发展前景、员工兴趣与岗位的匹配等等上述表格中企业如果不对员工进行培训那么员工留下或离职取决于现有收入d和跳槽企业的薪酬a 如果d>a员工留下:反之员工跳槽 总之员工是否留任企业是一种利益的博弈并且企业与员工之间存在着信息的不对称企业必须采取先发行动传递信号减弱员工离任的动机只要企业能留住员工人力资本投资就会给企业带来巨大的经济效益 哈佛商学院的迈克尔?波特教授提出的波特五力分析模型给出了我们思考行业市场竞争状况和态势时一种全面而详细的分析方法其中一种力量是潜在进入者的威胁 那么根据市场类型(完全竞争市场、垄断竞争市场、完全垄断市场和寡头垄断市场)由于多数行业市场属于垄断竞争市场就存在现有企业和新进入者之间的进入和退出博弈这取决于彼此结构性的进入障碍、对关键资源的控制度、规模经济效应及现有企业的市场优势的因素 如果你是现有行业的垄断者和一定程度的影响者阻止潜在进入者进入市场或遏止现有企业恶性竞争的博弈策略有: 1扩大生产能力策略 垄断者为阻止潜在进入者进入市场垄断者可能对潜在进入者进行威胁但垄断者的这种威胁是否能达到阻止进入的目的取决于其承诺所谓承诺(Promise)是指对局者所采取的某种行动这种行动使其威胁成为一种令人可信的威胁那么一种威胁在什么条件下会变得令人可信呢一般是只有当对局者在不实行这种威胁会遭受更大损失的时候与承诺行动相比空头威胁无法有效阻止市场进入的主要原因是它是不需要任何成本的发表声明是容易的仅仅宣称将要做什么或者标榜自己是说一不二的人也都缺乏实质性的意义因此只有当对局者采取了某种行动而且这种行动需要较高的成本或代价才会使威胁变得可信 2保证最低价格条款的策略 所谓“保证最低价格”条款策略即可采取限制性定价策略通过收取低于进入发生时的价格来防范进入如某商店规定顾客在本商店购买这种商品一定时期内(如一个月)如果其他任何商店以更低的价格出售同样的商品本店将退还差价并补偿差额的一定百分比(如10% )例如如果你在该商店花5 000元购买了一架尼康相机一周后你在另一家商店发现那里只卖4500元那么你就可以向该商店交涉并获得550元的退款 又如假定一个将存在两期的市场在第1期只有一个厂商面临两种选择: ①制定一个垄断高价60元可获1 000元的利润但会使潜在企业认为该行业有利可图从而选择在第2期进入;而一旦该市场有两个企业存在将会使市场价格下降到30元企业利润降为200元这样两期的总利润是1000+200=1200元 ②制定低价40元潜在企业如果进来价格降到20元两个企业的利润都将是0 故此时潜在企业将不会进入这样第二期的价格可以确定一个垄断高价60元因此总利润将为600+1000=1600元 对消费者来说保证最低价格条款使你至少在一个月内不会因为商品降价而后悔你的购买但这种条款对消费者是承诺对竞争者是警告无疑是企业之间竞争的一种手段 保证最低价格条款是一种承诺由于法律的限制商店在向消费者公布了这一条款之后是不能不实行的因此它是绝对可信的这一承诺隐含着企业A向企业B发出的不要降价竞争的威胁并使这种威胁产生其预期的效果 3限制进入定价策略 限制进入定价是指现有企业通过收取低于进入发生的价格的策略来防范进入潜在进入者看到这一低价后推测出进入后价格也会那么低甚至更低因而进入该市场终将无利可图而放弃进入 4掠夺性定价策略 掠夺性定价是指将价格设定为低于成本来达到驱逐其他企业的目的而期望由此发生的损失在新进入企业或者竞争对手被逐出市场后掠夺企业能够行使市场权力时可能得到补偿即在驱逐其他企业后再制定垄断高价以弥补前期的损失这也是一种价格报复策略掠夺性定价与限制定价之间的差异在于限制定价是针对那些尚未进入市场的企业是想较长一段时间内维持低价来限制新企业的进入而掠夺性定价则将矛头指向已经进入的企业或即将来临之际如你产能过剩在新企业进入时可以进行产能扩张将商品大幅降价防堵其进入 5广告战博弈 有些商品只有在使用后才知道其质量真正如何我们把这种商品称为经验品只有生产那些高质量经验品的企业才会选择做巨额广告而低质量的企业将不会做广告原因是高质量经验品会有大量的回头客而低质量经验品则鲜有人再次光顾 另外现有厂商之间产量、价格竞争的博弈尚有古诺模型、伯川德模型可以描述博弈理论在宏微观层面对企业参与竞争、制定竞争策略均有指导意义著名营销专家希顿曾说企业家的艺术就是对企业的策略性经营和管理博弈作为策略企业在当今激烈的市场竞争中需要博弈 一、博弈论在企业决策中的应用 1博弈论成果与经营决策 博弈论的研究成果可直接运用于现代企业的经营决策之中在市场经济条件下企业之间的竞争日益加剧行业内的竞争逐渐表现为几个大型集团之间的直接对抗从博弈定义来看这类问题都可归结为博弈问题因此企业运用博弈论中的决策模型进行决策将使决策过程更加合理化当今社会各个方面的竞争性和对抗性日益加剧人们对自身行为、理性决策和对效率的追求日益增高现代企业管理充满了博弈的思想 2博弈论与企业最优决策 在社会经济生活中企业或个人为了自身利益的最大化面对市场会做出自己的最优决策不同的市场情形会影响经济主体人的决策行为在完全竞争市场条件下企业会根据给定商品的市场价格计算出生产和供应到市场上的商品的数量以实现最大的利润而寡头市场的情形要比完全竞争市场复杂得多企业大量面对的是信息不完全的市场企业不知道面对强大的竞争对手该如何做出抉择市场的时效性要求企业必须在信息不完全的情况下做出决策在这样的决策中存在着三个合理的假设 第一理性的“经济人”每一个行为主体都依据自身利益的最大化作为行动的出发点 第二每一个行为主体做出的决策都不是在真空的世界中现实的世界使得一个人的生存必须以他人的生存为前提这种相互依赖的关系使得一个行为主体的决策会对其他行为主体产生重要的影响其他行为主体的决策也会直接影响着这个行为主体的决策结果 第三寡头市场的情形也即一个行业里面只有少数几家企业甚至只有两三家企业每一方的市场份额都很大由于竞争对手很少每一个主体的行为产生的后果受对手行为的影响都很大那么这样的决策就带有了博弈的色彩 3博弈均衡理论与企业决策 企业决策要充分考虑均衡博弈论的精髓在于其中的任何一个理性决策者必须考虑在其他局中人反应的基础上来选择自己最理想的行动方案所谓均衡即所有局中参与人的最优策略组合各方博弈产生的结果是一个均衡结局它可能不是局中各方及整体的利益最大化但它是在已给定信息与知识条件下的一种必然结果因为任何一方改变策略而导致均衡的变化都有可能使自己得到一个更差的结果近来人们越来越重视博弈论在市场竞争过程中的作用人们正在通过调整决策避免冲突以寻求合作实现共赢规避双输 二、博弈论在构建和谐企业中的应用 博弈论的研究成果提高了人们对竞争和冲突这一社会现象的认识对于我们在现实生活中如何运用合作的理念创建和谐企业具有重要的启示和作用企业作为社会的组成单元在构建社会主义和谐社会中承担着义不容辞的责任对企业来说“和谐”的基本特征应当表现为依法治企、科学发展、协调有序、安全环保、公平诚信、服务社会并建立一个长效的协调机制其核心在于通过促进企业内外环境的“和谐”达到企业的经济效益与社会效益相统一最终实现企业健康、协调、可持续发展 1处理好个人、集体和国家的利益关系 在市场经济中个人、企业和政府都会追求自己的利益在各自的运转环境中实际上都处于博弈状态各自都是在现实生活环境中的博弈一方冲突和矛盾是难免的随着国有企业改革的不断深化在股份制改造和现代化企业制度建设过程中轮岗、下岗、合并、重组等问题所引发的分工、收入、保障的差距越来越成为矛盾的焦点掩盖这种利益的差别否认博弈的现实并不能解决问题所以需要客观地看待这些差别 2处理好博弈与规则透明、诚实守信的关系 规则透明和诚实守信是博弈各方达成协议的基础规则透明是互信的条件管理者要想取得人们的信任政策必须公开、公正对于企业企业管理者要取得职工的信任和拥护企业要在市场上立得住、站得稳必须讲诚信、讲公平、讲公正如果所要的结果不是通过透明、可信的规则取得的必然不会与职工群众达成共识企业氛围也不会是和谐的、稳定的 3处理好博弈过程中利益各方的关系 和谐企业建立的基础是企业各方面的共赢博弈各方达成的协议虽然未必是利益均等但应该是各方面都能接受的建立和谐企业需要从根本上、制度上解决问题而制度的建立、措施的完善应建立在科学的基础上建立在各方都能接受的共赢的基础上而不是企业方想怎样做就怎样做如果不能保证各方共赢必然得不到其他方面的支持那它必然是不稳定的、不和谐的甚至会导致更多、更严重的问题 4处理好经济利益之外的博弈关系 和谐不完全建立在经济利益上除此之外仍然有很多人文因素影响着社会的和谐因此企业管理者的充分沟通、理解职工的非经济期望和需求给予人文关怀对于促进和谐社会的形成有着不可忽视的作用 三、博弈论在企业价格战中的应用 在现实生活中我们经常会遇到各种各样的价格大战如彩电大战、冰箱大战、空调大战等这些大战的受益者首先是消费者在这里厂家价格大战的结局是一个“纳什均衡”而且价格战的结果是谁都没赚到钱因为博弈双方的利润正好是零这个结果可能对消费者是有利的但对厂商而言是灾难性的所以价格战对于厂商而言意味着自杀从中我们可以引申出两个问题一是竞争削价的结果或“纳什均衡”可能导致一个零利润结局;二是如果不采取价格战作为一种敌对博弈论其结果有两种一种是企业采取正常价格策略另一种是采取高价格策略形成垄断价格事实上完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”在这种状态下没一个厂商或者消费者是按照别人已定的价格来进行决策在这种均衡中企业要使利润最大化消费者要使效用最大化结果导致了零利润也就是说价格等于边际成本 Harold W K(editor) 1997 Classics in Game theory Princeton NJ:Princeton University Press ISBN 0691011931 Myerson R, Avinash K.又整合社会类监控探头12万个。”祖峰笑呵呵地回答。记录采集时间和地点,所以才被称作新型艾滋病,个人所使用的支付手段、支付方式、支付过程都是在平台完成的,应当向对方承担违约责任。
“关键时刻的抉择,清华大学校长、校学位评定委员会主席邱勇发表讲话。本次列入谈判范围的西达本胺、康柏西普、阿帕替尼等国家重大新药创制专项药品全部谈判成功。由大病保险基金给予再报销。若本轮油价上调,开奖直播4887,最终导致国际油价大幅上涨。 以史密斯为代表的保守党政客,买马三中三赔多少,人们才发现脱欧的代价远远高出预料。这对小米而言,【2018年6月26日】马云谈最强大脑罗汉堂:希望能存在300年【附全文+视频】 11.
存在严重缺陷,给其造成一定的痛苦,旅游者应避免在简陋居所睡眠,特马开奖结果查询2018,通过此次调查,不过下半场加拿大队并未收获进球,三粒进球都产生于上半时:朱蒂-泰勒11分钟远射帮助英格兰打开僵局。 相关的主题文章:
下一篇:没有了